Hierarchical wrinkling in a confined permeable biogel
نویسندگان
چکیده
منابع مشابه
Hierarchical wrinkling in a confined permeable biogel
Confined thin surfaces may wrinkle as a result of the growth of excess material. Elasticity or gravity usually sets the wavelength. We explore new selection mechanisms based on hydrodynamics. First, inspired by yoghurt-making processes, we use caseins (a family of milk proteins) as pH-responsive building blocks and the acidulent glucono-δ-lactone to design a porous biogel film immersed in a con...
متن کاملHierarchical wrinkling patterns †
This paper reports a simple and flexible method for generating hierarchical patterns from wrinkling instability. Complex features with gradually changing topographies are generated by using the spontaneous wrinkling of a rigid membrane (titanium) on a soft foundation (polystyrene) compressed via the diffusion of a solvent. We show that the morphology of these unreported wrinkled patterns is dir...
متن کاملInvestigation of electron and hydrogenic-donor states confined in a permeable spherical box using B-splines
Effects of quantum size and potential shape on the spectra of an electron and a hydrogenic-donor at the center of a permeable spherical cavity have been calculated, using linear variational method. B-splines have been used as basis functions. By extensive convergence tests and comparing with other results given in the literature, the validity and efficiency of the method were confirmed.
متن کاملViscoelastic properties of confined polymer films measured via thermal wrinkling†
We present a new wrinkling-based measurement technique for quantifying the viscoelastic properties of confined polymer thin films. This approach utilizes real-time laser-light scattering to observe the kinetics of thermally-induced surface wrinkling, which evolves isothermally as a function of annealing time. Specifically, wrinkling is induced by applying a thermal stress to a polystyrene film ...
متن کاملHierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry
Complex hierarchical architectures are ubiquitous in nature. By designing and controlling the interaction between elementary building blocks, nature is able to optimize a large variety of materials with multiple functionalities. Such control is, however, extremely challenging in man-made materials, due to the difficulties in controlling their interaction at different length scales simultaneousl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Advances
سال: 2015
ISSN: 2375-2548
DOI: 10.1126/sciadv.1500608